Суйко

История металлургии средневековой Европы

4 сообщения в этой теме

В то время как на Востоке успешно развивали технологию тигельной плавки высококачественной стали из природно - легированных руд, на Западе происходило постепенное освоение других металлургических технологий.

Как известно, во 2-й половине 1-го тысячелетия лидерство в политической жизни Европы принадлежало викингам, франкам и государствам, располагавшимся в Альпийском регионе. Рассмотрев историю Древнего мира, мы уже знаем, что политическая гегемония с древнейших времен базировалась на металлургическом фундаменте.

Ландшафт как важнейший металлургический ресурс

В раннем Средневековье сама природа способствовала развитию технологий металлургии железа в Скандинавии и Альпийском регионе. В этих регионах были в достатке легкодоступные богатые железные руды. Сначала их извлекали непосредственно на поверх-ности земли, а по мере истощения открытых месторождений железную руду стали добывать из штолен — горизонтальных или наклонных горных выработок.

Такое ведение горной добычи особенно широко практикова-лось именно в Альпах, где распространенным видом геологической структуры являются «горсты», т.е. поднятые по разломам участки земной коры, богатые рудами металлов.

В Европе горсты образуют вершины с крутым обрывистым южным склоном и пологим северным с максимальной высотой 1000—1300 метров над уровнем моря. Классическими примерами горстов являются горы Гарц, что на территории современных Германии, Австрии и Италии, Вогезы на северо-востоке Франции, Рудные в Чехии и Германии.

Помимо залежей руд цветных и черных металлов, горсты располагают лесистыми ущельями и быстрыми горными потоками. Таким образом, в распоряжении средневековых металлургов находились богатые ресурсы качественной древесины для выжига угля и мощные потоки воды для приведения в действие водоналивных колес.

Однако широкое использование дутьевых средств началось в конце тысячелетия, а до этого металлурги использовали, главным образом, естественное движение воздуха. И в этом виде ресурсов Скандинавия и Альпы предоставляли металлургам необходимые возможности.

Север Европы часто называют страной ветров, возможно, наи-более образно это отношение к природе Скандинавии и арктичес-ких архипелагов выразил великий французский романист Виктор Гюго, который писал: «...Северные фьорды и архипелаги - это царство ветров. Каждый глубоко врезающийся в побережье залив, каждый пролив между многочисленными островами превращается в поддувальный мех...

Постоянным движением воздуха отличается и Альпийский реги-он, особенно его древнейшая металлургическая провинция - Штирия. Таким образом, средневековый металлург, работавший с крупнейшими агрегатами своего времени, должен был быть специалистом-«ландшафтоведом», т.е. должен был уметь подобно мореплавателю, управ-ляющему кораблем, «поймать ветер», чтобы извлечь железо из руды.

Сыродутные и «каталонские» горны

И в Скандинавии, и в Альпах в VII-VIII вв. стали строить сыродутные горны высотой больше человеческого роста, причем увеличение высоты агрегата происходило очень интенсивно и к концу тысячелетия печи строились высотой до 5 метров.

Какова же причина такого изменения конструкции агрегата? Из-начальное стремление к повышению производительности печи дало «побочный» эффект, который неожиданно превзошел первоначальные ожидания средневековых мастеров. Дело в том, что с увеличением высоты горнов в них стали существенно улучшаться условия теплооб-мена между опускающимися сверху железорудными материалами и поднимающимся снизу, от фурм, восстановительным газом (окси-дом углерода). Можно сказать, что в печи появилось «дополнительное» тепло. В результате стали более полно проходить как реакции восстановления железа из оксидов, так и науглероживания свежевосстановленного железа. Таким образом, получаемая крица стала более равномерной по химическому составу, в ней повысилось содержание железа, а само железо стало более насыщеным углеродом.

В вышеупомянутых печах так же, как и в сыродутных горнах, производимым продуктом оставалась твердая крица, но в связи с развитием в агрегате процессов теплообмена их можно отнести и к категории шахтных печей, которыми считаются появившиеся позднее домницы, доменные и ваграночные печи. «Двойственная» природа обсуждаемых скандинавских и альпийских средневековых печей нашла отражение в их названиях. В Скандинавии такие печи назывались «осмундскими» (от «осмунд» - крица), в Альпийском регионе высокие сыродутные горны получили название «штюкофены» (от немецких слов «штюк» — крица и «офен» - печь) в отличие от обычных сыродутных горнов, за которыми закрепилось название «реннофен» - печь с «бегущим» шлаком. Но о штюкофенах и осмундских печах речь пойдет чуть позже.

Итак, увеличение высоты металлургического агрегата, приме-нявшееся в конструкции штюкофенов и осмундских печей, было лишь одним из направлений увеличения интенсивности его работы. Собственно производительность процесса экстракции железа из руды во все времена определялась интенсивностью подачи в печь дутья.

В раннем Средневековье был разработан еще один способ по-вышения производительности сыродутного горна, который заклю-чался в разработке конструкции низкой, но интенсивно работаю-щей печи, постоянно подгружаемой шихтой. По пути создания такого горна пошли металлурги Юго-Западной Европы: в X—XI вв.: здесь была разработана технология плавки железа в горнах, получивших название «каталонских».

Каталонские горны появились сначала в испанских, а затем и во французских Пиренеях. Современники выделяли три модифи-кации этих агрегатов: собственно каталонский горн — самый круп-ный по размерам и производительности, а также наваррский и бискайский горны несколько меньших размеров. Длина горнов составляла от 0,6 до 1,2 м, ширина — от 0,6 до 1,0 м и глубина -0,5-0,8 м.

user posted image

Рис. 1. Каталонский горн,

снабженный водотрубной возду-ходувкой (тромпой).

1 - пробка, расположенная в верхнем водном резервуаре и предназначенная для регулирования потока воды в нижний резервуар;

2 - отверстия для всасывания воздуха, выполненные в трубе под углом 40-45" к горизонту;

3 - труба, служащая для создания пото-ка воды между верхним и нижним резер-вуарами;

4 - слив воды из нижнего резервуара;

5 — патрубок для отвода воздушного ду-тья к фурменному устройству;

6 - коническая фурма, изготовлявшаяся, как правило, из красной меди;

7 — железная руда;

8 — формирующаяся железная крица;

9 — железистый шлак;

10- канал для выпуска шлака из горна

Таким образом, объем рабочего пространства пиренейских горнов составлял всего лишь 0,3—0,9 м3, что в 5-10 раз меньше объема штюкофенов. И, тем не менее, они практически не уступали своим высоким «собратьям» в производительности. (Необходимо отметить, что каталонский горн применялся только для заводского производства металла в средневековых Испании и Франции.)*

На каждом железоделательном заводе устраивалось не менее 10 каталонских горнов. Они располагались вдоль одной общей стены, которая строилась со стороны реки, где устраивались водоналивные колеса, приводящие в действие дутьевые мехи. Эта стена называлась «заводской». К ней примыкали «фурменная» и «противофурменная» стены. В фурменной стене под углом около 40° к уровню земли устанавливалась коническая, слегка сплюснутая фурма из красной меди длиной около 20 и диаметром 2—3 дюйма.

Противофурменная стена устанавливалась со значительным наклоном наружу и выполнялась с изогнутым сводом. В лицевой стене предусматривались два отверстия для ломов и выпуска шлака, а также специальное устройство для установки «шесточной» железной доски, которая меняла угол наклона для регулирования загрузки в горн шихтовых материалов.

С особой ответственностью строили дно горна. Его выполняли из цельного огнеупорного камня (гранита, песчаника или слю-дяного сланца). Верхнюю сторону камня тщательно обрабатывали, добиваясь, чтобы она была гладкой и немного вогнутой. Камни служили от 3 месяцев до полугода. Под камнем на старом мель-ничном жернове устраивалась «постель» из дробленого шлака и глины. Трубы над горном не было: выходом для образующихся газов служило отверстие в крыше заводского помещения.

Перед началом процесса горн тщательно чистили от остатков предыдущей плавки, затем засыпали древесный уголь до уровня фурмы и уплотняли его. На плотную «постель» древесного угля насыпали кусковую руду (как правило, это был бурый железняк), располагая ее по противофурменной стене. Дополнительные порции древесного угля размещали около фурменной стены.

В ходе плавки, по мере выгорания угля и плавления руды, в горн вводили их новые порции, причем отсутствие жестких требований к газодинамическим параметрам шихтовых материалов позволяло использовать руду мелких фракций. Из рудной пыли делали смоченные водой комки, которые и загружали в горн. Периодически из горна выпускали шлак, пробивая специально предусмотренные для этого отверстия. Вообще же контакт крицы с железистым шлаком приносил существенную пользу, поскольку позволял перевести в шлак большую часть фосфора, присутствие которого в готовом металле существенно снижало его качественные характеристики.

Наиболее сложной являлась операция «опускания руды в горн», для выполнения которой между противофурменной стеной и рудой вставляли лом и, действуя им как рычагом, подвигали нижние слои руды к фурме. Сигналом к окончанию процесса служил белый цвет пламени, который указывал на начало окисления железа крицы. Обычная длительность плавки достигала 5—6 часов. Таким образом, за сутки успевали произвести 3—4 крицы массой 100—150 кг. После прекращения подачи дутья с крицы сгребали покрывающие ее шихтовые материалы и в отверстие в лицевой стене вставляли лом, а второй лом опускали в горн сверху. Действуя ломами как рычагами, крицу вынимали из горна по пологой выгнутой противофурменной стене.

В эпоху позднего Средневековья при нормальном ходе процесса извлечение железа из руды в крицу достигало 60-70% при расходе древесного угля 3-3,5 кг на 1 кг крицы. Получался низкоуглеродистый металл (менее 0,5% углерода). Содержание оксида железа в шлаке было существенно ниже, чем при применении обычных сыродутных горнов: оно составляло 35—40%.

Каждый каталонский горн обслуживался бригадой из 8 человек. В состав бригады входили мастер, его помощник, следивший за работой воздуходувной техники, два плавильщика, обеспечивавшие процесс производства крицы, молотовой мастер с помощником, рабочий, готовивший шихтовые материалы к плавке, и весовщик, осуществлявший контроль за хранением, расходованием материалов и ведавший учетом готовой продукции.

Несмотря на кажущуюся простоту конструкции, каталонские горны находились в эксплуатации и после появления доменных печей, с которыми они конкурировали в Испании вплоть до середины XIX в. Секрет «долгожительства» каталонских горнов объясня-ется применением для их обслуживания начиная с XVII в. мощных водотрубных воздуходувок, или так называемых «тромп». Тромпа была изобретена итальянским инженером Джанбатиста делла Портой, и обеспечивала не только интенсивную, но и равномерную подачу дутья в металлургический агрегат.

Штюкофены и осмундские печи

Теперь более подробно рассмотрим работу штюкофенов и осмун-дских печей. Отметим, что конструкция агрегатов была очень похожей, а основные различия заключались во внешнем «оформлении»: осмундские печи, как правило, заключались в деревянные срубы, а конструкция штюкофенов усиливалась снаружи каменной кладкой. Печи строили многогранного сечения, чаще всего в виде двух четырехгранных призм с общим большим основанием. Использова-лась одна фурма, которая устанавливалась горизонтально в нижней части печи таким образом, что ниже нее располагались лишь отверстия для выпуска из печи шлака.

Перед началом плавки внутреннее пространство печи обмазывали огнеупорной глиной и набивали угольным порошком. Затем производили «обжигание горна», которое заключалось в прогреве кладки путем сжигания дров и некоторого количества древесного угля. После этого печь наполовину загружали порцией древесного угля, перемешанного с небольшим количеством легкоплавкой железной руды. В результате плавления этой первой, или «задувочной», шихты стенки нижней части печи покрывались своеобразным защитным слоем — «гарнисажем». Только после такой длительной подготовки агрегата переходили собственно к процессу плавки.

Шихту готовили тщательно: куски руды, представлявшей собой красный или бурый железняк с содержанием железа около 50%, дробили до крупности гороха или лесного ореха; древесный уголь, требования к качеству которого непрерывно возрастали, измельчали до размера грецкого ореха. Оба компонента шихты отделяли от мелких частиц и пыли вручную. Печь наполовину заполняли древесным углем, а затем загрузку руды и угля производили последовательно горизонтальными слоями толщииой не более 10—12 см.

После воспламенения древесного угля в нижней части печи, где проходила реакция неполного горения углерода угля до монооксида углерода (СО), достигалась температура 1400—1450°С. На верху печи, на колошнике (название его происходит от слова «колоша», т. е. мера твердого сыпучего материала) температура отходящих газов, состоящих, в основном, из СО и азота, составляла 700-900°С. Вот почему отходящий газ при взаимодействии с кислородом воздуха воспламенялся и непрерывно горел в течение всей плавки. Основным механизмом восстановления железа из оксидов была их реакция с твердым углеро-дом, поэтому содержание СО2, образующегося при восстановлении железа монооксидом углерода, в отходящих газах было ничтожным.

Главной составляющей шлака, как и в обычных сыродутных горнах, был фаялит. Шлак содержал 45—50% монооксида железа, 25—35% кремнезема, 4-6% глинозема, до 5% извести и магнезии и до 15% монооксида марганца. Кроме того, в шлаке в значительных количествах присутствовали щелочи, фосфор (иногда более 1%) и сера. Железистые шлаки отличаются высокой жидкоподвижностью, поэтому они легко вытекали из печи через отверстия в стенках, расположенных несколько ниже уровня фурмы. Присутствие в рудах монооксида марганца, взаимодействовавшего с кремнеземом, облегчало восстановление железа и уменьшало его потери в ходе плавки.

В результате плавки получался металл с низким содержани-ем кремния (менее 0,05%), марганца (менее 0,5%) и фосфора (менее 0,01%). Содержание углерода в различных участках крицы колебалось в широких пределах от 0,05 до 1,5%. Как известно, температура плавления низкоуглеродистого железа, составлявшего основную массу крицы, достигает 1480—1520°С, поэтому крица получалась твердой. Однако с повышением высоты печей и улучшением условий теплообмена содержание углерода в крице увеличивалось, и с начала 2-го тысячелетия ее часто извлекали из штюкофенов оплавленной.

Плавка продолжалась 4—6 часов, после чего раскаленную добела крицу клещами извлекали через пролом в передней стенке горна. Пролом делался в месте установки фурмы, что позволяло одновременно производить контроль состояния и при необходимости замену сопла дутьевого устройства. В крице оставались включения угля и шлака, составлявшие до 10% ее массы, поэтому ее уплотняли деревянными молотами, а затем тщательно проковывали кузнечным молотом для удаления шлака из мелких пор. Потери железа со шлаком и в результате отбраковки попрежнему оставались высокими и могли достигать половины от количества железа, попавшего в печь с рудой. Всего за сутки с учетом постоянного ремонта печи успевали произвести 2—4 крицы.

Высоким был и расход древесного угля: непосредственно на про-цесс экстракции железа из руды он составлял 3-4 кг на 1 кг «сырого» железа, еще столько же топлива требовалось сжечь при переработке сырца в товарный продукт. С учетом того, что при производстве древесного угля масса продукта составляла не более 15% от массы дров, общий расход высококачественной древесины на производство 1 кг железа достигал почти 50 кг. Потребность в древесном угле была столь высока, что к концу тысячелетия пришлось существенно усовершенствовать технологию его производства: от архаичного способа выжига в ямах перешли к более производительной и экономичной технологии получения продукта в кучах диаметром свыше 3 метров.

Штюкофены и осмундские печи обеспечивали самый высокий температурный уровень термических процессов раннего Средневеко-вья. Температура продуктов плавки (крицы и шлака) в них гарантированно достигала 1400°С, но условия науглероживания металла в печах все же еще не позволяли получать в них чугун. Нужен был еще один шаг, еще некоторое увеличение высоты агрегата, чтобы получить новое качество и новый продукт процесса, а именно высокоуглеродистый сплав — чугун. Этот шаг был сделан после появления печей шахтного типа - «домниц» (русское название) или «блауофенов» (немецкий термин) в начале XIV в.

То обстоятельство, что именно металлургическая индустрия обеспечивала наивысшие температуры в Средневековой промышленности, было хорошо известно современникам. У многих народов в это время появляются легенды о металлургах — пове-лителях огня (пламени).

Возможно, один из наиболее поэтических образов средневеко-вой металлургии железа создан великим Гете в поэме «Фауст», где главный герой обращается к верным слугам темных сил — воронам — со следующим напутствием: «...Летите к кузнице подгорной, /Где гномы день и ночь, упорно, /Железо на огне куют. /Трудолюбивый этот люд /Уговорите дать нам пламя, /Невыразимое словами, /Каленья белого предел...»

При некоторой условности поэтических форм необходимо отметить, что автор точно указывает, что кузница (в данном случае - штюкофен) располагается именно в горной местности, именно в такой кузнице производится раскаленная крица - материал с самой высокой в то время температурой.

user posted image

Рис. 2. Характерная конструкция штюкофена или «высокого» горна.

* Монополия на производство железа высокого качества была необходима эти странам, в то время активно осуществлявшим создание единых государств из многочисленных феодальных княжеств. Испания и Франция имели мощных внешних врагов, препятствовавших объединению государств: Испания осуществляла реконкисту (освобождение из-под многовекового арабского влияния), а Франция боролась за лидерство в регионе с Бургундским герцогством, на территории которого располагались Вогезы - важнейшая металлургическая провинция средневековой Европы.

П. И. Черноусов

кандидат технических наук доцент Московского государственного института стали и сплавов.

О Черноусове П.И.

Поделиться сообщением


Ссылка на сообщение
Поделиться на других сайтах

В то время как на Востоке успешно развивали технологию тигельной плавки высококачественной стали из природно - легированных руд, на Западе происходило постепенное освоение других металлургических технологий.

Ну, опять про "природно-легированные руды"!

Я исследовал японскую тамахаганэ (исходный материал для катан) на спектроскопе - чистое железо (Fe) с очень незначительными (доли процента) содержанием примесей (более 10 штук разных), не оказывающих никакого влияния на качество стали. Причем содержание Fe в крице - 97,5%. Ибо исходное сырье не подразумевает полиметаллизма - это железоносный песок для Японии, Кореи и большей части Маньчжурии, магнитные железняки для Китая.

И очень хочу найти, где же на Востоке (кроме мусульманского) лили высококачественную сталь путем тигельной плавки? В Японии и Корее - кричный передел, науглероживание крицы в процессе ковки, в Китае - восстановление из чугунов или кричный передел, или науглероживание мягкой стали, или дамасковые поковки.

Поделиться сообщением


Ссылка на сообщение
Поделиться на других сайтах

Кстати болтают, что китайцы мол еще во времена, когда Геродот сидел на горшке, знали что-то вроде мартеновской плавки. Хотелось бы выяснить, откуда ноги растут у этой сплетни, почему знатоки столь продвинутых технологий не завалили весь мир кладенцами?

Поделиться сообщением


Ссылка на сообщение
Поделиться на других сайтах

Хотелось бы выяснить, откуда ноги растут у этой сплетни, почему знатоки столь продвинутых технологий не завалили весь мир кладенцами?

По каналу BBC (баба бабе сказала) передали ph34r.gif

Литье чугуна освоили рано. Обычно сталь получали или кричным переделом, или же выжигом углерода из чугуна. Могли получить низкоуглеродистую сталь и выковать дамасковый клинок, переплетая мягкие прутки с жесткими из высокоуглеродистой стали. Очень часто пользовались методом "вставного лезвия" (90% всех виденных мною клинков) или "трех пластин" (гораздо меньше и практически всегда на мечах.

Поделиться сообщением


Ссылка на сообщение
Поделиться на других сайтах

Пожалуйста, войдите для комментирования

Вы сможете оставить комментарий после входа



Войти сейчас